

Critical Path Opportunities in OBRR/CBER

CBER Critical Path Workshop October 7, 2004

Jay S. Epstein, M.D.

Director

FDA/CBER/OBRR

OBRR Product Responsibilities

- Division of Blood Applications
 - Blood and plasma licenses
 - Blood establishment software
 - Blood grouping reagents
- Division of Emerging and Transfusion Transmitted Diseases
 - Blood donor screening tests for infectious agents
 - Retroviral diagnostics
- Division of Hematology
 - Bacterial detection devices
 - Plasma-derived products (IGIV, albumin, coagulation products)
 - Blood and blood component collection devices
 - Hemoglobin-based oxygen carrying solutions

The Critical Path Challenge for Blood Products

Enhance
Product Safety,
Purity and
Potency

Avoid Product
Shortages & Major
Increased Costs

Critical Path opportunities exist that could improve blood product safety, efficacy and availability while minimizing disruptions to the blood system

Special Role for FDA

- Unique position to identify cross-cutting issues
- Opportunity to coordinate efforts
 - Across the spectrum of blood issues
 - » Product characterization
 - » Safety and efficacy determinations
 - » Supply impacts
 - Across industry functions of developing improved assays and standards
 - Amongst diverse industries involved in manufacturing blood and blood products

Historical Examples of Critical Path Research in OBRR

- 1950's Stability of albumin
- 1960's Clotting factor potency
- 1970's Toxicity of PPF from PKA
- 1980's HIV safety of plasma fractions
- 1990's HCV safety of IGIV
- 2000's Ongoing initiatives
 - » Toxicity of hemoglobin solutions
 - » TransNet model for monitoring blood shortages
 - » Donor screening for West Nile Virus

Critical Path Opportunity: Hemoglobin-Based Oxygen Carriers

Issues

- Blood availability for trauma victims in rural areas and in disaster situations (e.g., war or bioterrorism attack)
- Toxicity of early generation of Hb-based oxygen carrying solutions
 - Vasoconstriction
 - High blood pressure
 - Multiple organ damage

Critical Path Opportunity: Hemoglobin-Based Oxygen Carriers, cont.

Actions

- Identified the link between the "oxidative chemistry" of a given hemoglobin and its toxicity
- Developed Endothelial Cell/Animalbased Model Systems to promote understanding of blood substitute toxicity

Critical Path Opportunity: Hemoglobin-Based Oxygen Carriers, cont.

Outcomes

- Preclinical testing is becoming more predictive of clinical performance
- Design of second generation Hbbased blood substitutes was facilitated

Critical Path Opportunity: Detection of Blood Borne Pathogens

Issue

- Blood safety
 - Need for development of technologies and methodologies that can screen blood donors for a large number of pathogens simultaneously

Critical Path Opportunity: Detection of Blood Borne Pathogens, cont.

Actions

- Develop "multiplex" NAT and DNA microarrays for blood donor screening
- Develop and provide FDA reference panels

Outcomes

- Identify critical parameters for assay development
- Standardized panels used as a target for industry and to assess different assays
- Reduce the investment costs for industry

Microarray for Detection of Blood-borne and BT Pathogens

Group 1: Bacteria, and Parasites

Ba: Bacillus anthracis (anthrax)

Ft: Francisella tularensis (tularemia)

LT: Leishmania /Trypanosoma

Yp: Yersinia pestes and pseudotuberculosis (plague)

Group 2: Bioterror Viruses

POX: Pox viruses VAC: Vaccinia

VAR: Variola (Smallpox) MPV: Monkeypox Viruses CPV: Cowpox Viruses

NOVAC: All Pox viruses but Vaccinia

EBO: Ebola Viruses

VE: Venezuelan Equine Encephalitis Viruses

VETD: VE Trinidad Donkey MBG: Marburg Viruses

Group 3: Blood Borne Viruses

WNV: West Nile Viruses HCV: Hepatitis C Viruses HBV: Hepatitis B Viruses

HIV: Human Immunodeficiency Viruses HTLV: Human T-cell Leukemia Viruses

4 internal control probes (Human rRNA gene)

Results of detection in pathogen-spiked blood – 50 cells/ml

Bacillus anthracis

livestock vaccine strain

Francisella tularensis

Live Vaccine Strain

Yersinia pseudotub.

Critical Path Opportunity: Counterterrorism – Safety of Smallpox Vaccination

Issue

- Smallpox vaccination can cause life-threatening complications in immunodeficient and eczematous individuals
- Efficacy of Vaccinia immune globulin (VIG) as treatment cannot be tested in humans

Critical Path Opportunity: Counterterrorism – Smallpox Vaccination, cont.

Actions

 Development of a SCID mouse model to test efficacy of VIG

Outcomes

- Transfer of methodology to industry
- Incorporation of this model helps provide a pathway for licensure of new VIGIV products

Pre-Exposure Prophylaxis with VIGIV

VIGa at 40mg/mouse

40 mg VIGIV given i.p. to mice at indicated times preexposure to 10⁶ PFU of vaccinia NYCBOH

Day 40 post-Scarification 10 mg/5 days X 6 Treatment

Critical Path: Potential Initiatives

- Detection of blood-transmissible agents
 - Nucleic acid based test to detect bacteria and parasites in blood
 - Diagnostic and donor screening tests for transmissible spongiform encephalopathies
 - Establishment of cell lines expressing Toll Like Receptors for detecting microbial components in plasma-derived products

Critical Path: Potential Initiatives

- Assessment of Blood Product Safety
 - Animal inoculation studies to evaluate the infectivity of WNV at low titer in blood
 - Animal model to predict immunogenecity of factor VIII products
 - New NAT standards (e.g. parvovirus B19)
- Blood Product Potency
 - Development of an animal model to test function of modified platelets
 - Standards for additional plasma-derived products (e.g., Alpha 1 PI)

Critical Path

OBRR welcomes your ideas!

Thank you.

